LITPACK

An Integrated Modelling System for Littoral Processes and Coastline Kinetics

A Short Description
LITPACK - FOR MODELLING OF COASTAL PROCESSES

Noncohesive sediment transport in combined waves and current
STP

Littoral drift along a uniform beach with an arbitrary coastal profile
LITDRIFT

Coastline development due to changes in transport capacity
LITLINE

Channel backfilling due to nonequilibrium sediment transport mechanisms
LITTREN

Profile development due to cross-shore transport
LITPROF
LITPACK – LITTORAL TRANSPORT AND COASTLINE KINETICS

Introduction
LITPACK is a 'stand-alone' deterministic numerical modelling system, describing the major processes in the nearshore zone. LITPACK integrates DHI's proven numerical models for coastal sediment transport and coastline development, in a single package suitable for a wide range of coastal engineering applications.

The individual modules of LITPACK simulate particular coastal processes, with the linking between modules being performed by an automatic control module. This allows rapid simulation of complex coastal problems, without loss of detail in the individual modules.

All LITPACK modules apply a fully deterministic approach. This allows consideration of many, and sometimes dominating, factors which are not available to semi-empirical formulations. For example the simulation of a complex multi-barred profile, with varying grain size distribution, is prone to gross error when using an energy flux approach.

The processes covered by the individual modules can broadly be described as:

STP - Non-cohesive sediment transport in waves and currents

LITDRIFT - Longshore current and littoral drift

LITLINE - Coastline evolution

LITTREN - Trench sedimentation

LITPROF - Cross-shore profile development

General Overview
A short description of applications, basic equations and solution techniques for each of the LITPACK modules is presented on the following pages.

The Sediment Transport Module, STP
The computational module STP calculates the non-cohesive sediment transport in combined waves and currents.

The STP Module is integrated in the other LITPACK modules and forms the basis for all sediment transport calculations in LITPACK – and in DHI's 2D modelling system, MIKE 21, as well!

STP solves the vertical sediment diffusion equation on an intra-wave period grid to provide a detailed description of the non-cohesive sediment transport for breaking/non-breaking waves and current.

STP accounts for:
- Waves and currents at arbitrary angles
- Breaking/non-breaking waves
- Plane/ripple-covered bed
- Uniform/graded bed material
- Effect of bed slope
- Effect of streaming

Application Areas
STP is the basis for all sediment transport modelling within LITPACK, but can also be applied for investigating harbour siltation and intake problems.

A Short Description
Basic Equations

The 'intra-wave period' sediment transport model STP forms the basic sediment transport description for combined wave and current action in all the LITPACK modules.

In combined waves and current the turbulent interaction in the near bed boundary layer is of importance for the bed shear stresses as well as for the eddy viscosity distribution. The basis for the sediment transport description is the model for turbulent wave-current boundary layers of Fredsøe (1984). The boundary layer is composed of two regions:

Close to the bed the turbulence and the shear stress in the wave boundary layer vary within the wave period, giving rapidly changing bed concentration and turbulent diffusion coefficients.

Outside the wave boundary layer the mean velocity is described by a log-profile. The increased turbulence level in the wave boundary layer retards the mean current, an effect which is expressed through an apparent wave roughness, \(k_w \), which is larger than the natural bed roughness \(k \).

The total sediment load is split into bed load and suspended load, which are calculated separately. The transport of non-cohesive material as bed load is calculated according to the model presented by Engelund and Fredsöe (1976). Through subsequent developments this model has been extended to cover combined waves and current, and conditions in the surf zone. The bed load transport is determined as a function of the bed shear stress through the dimensionless bed shear stress, \(\theta \):

\[
\theta = \frac{U_f^2}{(s - 1)gd}
\]

The bed load transport is assumed to correspond to the instantaneous bed shear stress under unsteady conditions, e.g. under wave action.

The suspended load transport, \(q_b \), is described through the sediment concentration \(C \), which is determined from the vertical turbulent diffusion equation:

\[
\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left[\varepsilon \frac{\partial C}{\partial z} \right] + w \frac{\partial C}{\partial z}
\]

\(\varepsilon \) is taken to be equal to the turbulent eddy viscosity of the flow field. The near-bed boundary condition is given as bed concentration \(C_b \) at the level \(z = 2d \). \(C_b \) is determined as a function of \(\theta \) using the dynamic considerations of Bagnold (1954), that a certain sediment concentration is required near the bed in order to transfer the shear stress to the bed through grain-grain interaction.

The bed concentration, \(C_b \), is only valid for the plane bed case, i.e. sheet flow, which is found for \(\theta \) larger than about 0.8. At smaller \(\theta \)-values the bed is covered by wave ripples. The sediment transport model by Fredsøe et. al (1985) has been modified to take the effect of wave ripples into account. The modification involves the bed concentration, turbulent diffusion and the bed roughness. The values of \(C_b \) and \(\varepsilon \) are based directly on the laboratory measurements of Nielsen (1979). The roughness is expressed through the ripple dimensions as given by Raudkivi (1988). The sediment transport model converges gradually towards a plane bed description with increasing bed shear stress or mean current velocity.
Inside the surf zone, the wave energy is dissipated due to breaking, and the production of turbulence is very intense. This has been taken into account by use of a one-equation turbulence model (Deigaard et al. (1986)).

STP also has the possibility to solve the intra-wave period vertical sediment diffusion equation for asymmetric waves, including the effects of Lagrangian drift, induced streaming and density driven currents. Inside the breaker zone, the undertow profile is also dependent on the shoreward flux of water in the surface roller.

The suspended sediment transport q_s is calculated as the product of sediment concentration and the mean circulation current averaged over the wave period T (Hedegaard et al. (1988)):

$$q_s = \frac{1}{T} \int_0^T \int_0^{U_{mean}} C \, dy \, dt$$

The suspended sediment follows the water, and the sediment transport shall be based on the Lagrangian flow velocity. U_{mean} is thus taken as the sum of the Eulerian circulation current U and the Lagrangian drift velocity U_D obtained from the flow model.

Symbol List

- s: relative sediment density
- g: acceleration of gravity
- d: grain size
- U_f: shear velocity
- t: time
- z: vertical coordinate (zero at the bed)
- ε_s: turbulent diffusion coefficient
- w: settling velocity of the sediment.

Solution Technique

The equations are solved using interpolation and finite difference techniques with time-variables defined on an intra-wave period staggered grid and space-variables defined on a non-equidistant vertical grid.

Input

The following basic input is required in STP:
- Water depth and bed slope
- Wave properties; height, period and angle
- Current velocity and direction
- Sediment properties; size, gradation, fall velocity.
Output
The following output can be obtained from STP:

- Time averaged values of the profiles of eddy viscosity, concentration, velocity and the suspended sediment transport in two directions
- Total bed load and suspended load in two directions
- Time-varying profiles of eddy viscosity, concentration and velocity in two directions
- Time-varying values of bed velocity, friction velocity, Shields parameter and bed concentration.

References

THE LONGSHORE CURRENT AND LITTORAL DRIFT MODULE, LITDRIFT

The LITDRIFT Module combines STP with a coastal hydrodynamic module to give a deterministic description of the littoral drift.

LITDRIFT provides a powerful tool for sediment budget analysis, which is of paramount importance to all coastal morphology studies.

The LITDRIFT Module simulates the cross-shore distribution of wave height, set-up and longshore current for an arbitrary coastal profile. It provides a detailed deterministic description of the cross-shore distribution of the longshore sediment transport for an arbitrary bathymetry for both regular and irregular sea states.

LITDRIFT accounts for:
- Regular/irregular waves
- Water levels
- Tidal currents
- Wind shear stresses
- Non-uniform bottom friction
- Wave refraction and shoaling
- Breaking
- Non-uniform sediment distribution.

LITDRIFT has the possibility to transfer a wave climate from deeper waters to a point in the profile, generating the output as a normal database for input in LITDRIFT or STP.

Basic Equations

The hydrodynamic model LITDRIFT includes a description of propagation, shoaling and breaking of waves, calculation of the driving forces due to radiation stress gradients, momentum balance for the cross-shore and longshore direction giving the wave set-up and the longshore current velocities. The model can be applied on complex coastal profiles with longshore bars. In the case of a longshore bar the broken waves can reform in the trough onshore of the bar. The waves can be treated as regular or irregular, and the effect of directional spreading can be included in the description.

It is assumed in the model that the conditions are uniform along the straight coast.

The equation for shore-parallel momentum balance determines the longshore current velocity profile:

\[\tau_{b} \cdot \frac{d}{dy} \left(\frac{d\rho E D}{dy} \right) = -\frac{d\rho E v}{dy} + \tau_{w} + \tau_{cur} \]

The relation between \(u \) and \(\tau_{b} \) is established by the model of Fredsøe (1984).

Having computed the longshore current points are selected which are representative for the littoral drift. The sediment transport calculations automatically carried out by the STP-module, are made to reflect the local conditions with respect to the energy dissipation, the percentage of non-breaking waves and the rms of the wave heights, cf. Deigaard et al. (1988).

The total sediment transport is dominated by transport contributions from areas where wave breaking occurs. The point selection procedure therefore gives preference to points in this area. In case of a bar-profile, the sediment calculation points will thus be located on the bars, where waves are breaking.

LITDRIFT gives the distribution of sediment transport across the profile, which is integrated.
10^{-3}

Longshore sediment drift

$\text{m}^3/\text{s}/\text{m}$

Longshore current velocity

m/s

Bathymetry

Wave height

Water level

Calculated Sediment Transport, Velocity, Wave Height and Water Level along a Profile
to obtain the total longshore sediment transport rate.

By including a hydrodynamic database, LITDRIFT calculates the net/gross littoral transport for a section of coastline over a specific design period. Important factors, such as the linking of the water level and the profile to the incident sea state are included.

Symbol List
- \(\tau_b \) : bed shear stress due to the longshore current
- \(\rho \) : density of water
- \(E \) : momentum exchange coefficient
- \(D \) : water depth
- \(u \) : longshore current velocity
- \(y \) : shore-normal coordinate
- \(s_{xy} \) : shear component of the radiation stress
- \(\tau_w \) and \(\tau_{cur} \) : driving forces due to wind and coastal current.

Solution Technique
The equations are solved using finite difference techniques with variables defined on a space-staggered equidistant horizontal grid.

Input
The following basic input is required in LITDRIFT:
- Cross-shore profile bathymetry with the values of bed roughness and grain properties (size, fall- velocity and gradation) given at each grid point
- Water level
- Wave properties; height, period and angle
- Tidal current velocity.
Output
The following output can be obtained from LITDRIFT:

- Cross-shore distribution of water level, longshore current, wave height and wave angle, water flux, bed load and suspended transport, total load and cumulative total load transport
- Cross-shore distribution of total annual littoral drift
- Total net- and gross transport rates.

References

THE COASTLINE EVOLUTION MODULE, LITLINE

LITLINE is a powerful and reliable tool for the design and optimisation of many coastal engineering projects.

Based upon the results from LITDRIFT, LITLINE simulates the coastal response to gradients in the longshore sediment transport capacity resulting from natural features and a wide variety of coastal structures.

LITLINE calculates the coastline evolution by solving a continuity equation for the sediment in the littoral zone. The influence of structures, sources and sinks are included.

LITLINE accounts for
- Structures (groynes, jetties, revetments and offshore breakwaters)
- Sources and sinks
- Diffraction of waves
- Depth contours
- Active depth and dunes.

Application Areas
The evolution of the coastline can be calculated, either based on a yearly net littoral drift or from a time series of wave events. The latter option offers the capability of studying coastline movements during a winter season (for instance maximum retreat) or coastline changes on a coast with monsoon climate.

Development of coastline near harbour during 30 years

Upper Figure: True scale, Lower Figure: Dissorted scale
Basic Equations
Based upon the results from the LITDRIFT, LITLINE simulates the coastal response to gradients in the longshore sediment transport capacity resulting from natural features and a wide variety of coastal structures.

The model solves the continuity equation for the coastline:

\[\frac{\partial y_c}{\partial t} = \frac{1}{h_{act}} \frac{\partial Q}{\partial x} + \frac{Q_{sw}}{h_{act} \Delta x} \]

The changes to the transport conditions caused by coastal structures are modelled by introducing appropriate internal boundary conditions. Besides blocking the transport, large structures change the transport relations close to the structure due to the sheltering effect from the structure itself. This effect is automatically included by introducing modified transport relations close to the structure.

With jetties and breakwaters the influence of diffraction on the wave climate is included.

Symbol List
- \(y_c \): distance from the baseline to the coastline
- \(t \): time
- \(h_{act} \): height of the active cross-shore profile
- \(Q \): long-shore transport of sediment expressed in volumes
- \(x \): long-shore position
- \(\Delta x \): long-shore discretization step
- \(Q_{sw} \): source/sink term expressed in volume/\(\Delta x \).

Input
The following basic input is required in LITLINE:
- Longshore relative coastline alignment together with dune properties, profile description, active depth and depth contour angles at each grid point
- Cross-shore profile bathymetries
- Data base with wave properties (wave height, period and angle), tidal current and water levels
- Position and size of structures
- Position and magnitudes of sources/sinks
- Database of transport rates (previously generated)

Output
The results of the simulation are the coastline position, longshore sediment transport rates and the depth in front of revetments, if they are present. The accumulated volume of material deposited and bypassed is also given.

Solution Technique
The equations are solved using finite difference techniques with variables defined on a space-staggered equidistant horizontal grid. The sediment transport rates are found by interpolation in a transport table previously generated for the particular site.
THE TRENCH SEDIMENTATION MODULE, LITTREN

LITTREN finds applications in areas where the suspended load is not in equilibrium with the local hydrodynamics, for example channel back-filling and intake intrusion problems.

LITTREN accounts for

- Non-equilibrium sediment transport in combined waves and currents.
- Full morphological feed back between bed level change, waves, currents and sediment transport.
- Current and wave 'refraction' over the channel.

Basic Equations

Based upon the standard STP formulation, LITTREN links a one-dimensional wave – current model to a non-equilibrium formulation of the vertical sediment diffusion equation.

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left(\epsilon \frac{\partial c}{\partial z} \right) + w \frac{\partial c}{\partial z}$$

Bed load transport and the near bed concentration include gravity effects, which are found to be important. In cases where the channel direction is similar to the persistent current direction, gravity effects are the dominating back-filling mechanism.

Example of Simulated Trench Sediment
The change in bed level is found by the bottom sediment continuity equation:

\[
\frac{\partial z}{\partial t} = \frac{1}{(1-n)} \frac{\partial q}{\partial x}
\]

\textbf{Solution Technique}

The module includes a morphological subroutine using a modified Lax-Wendroff solution to the bottom sediment continuity equation.

This allows continuous interaction between the morphology and hydrodynamics, thereby avoiding an overly conservative solution based upon initial values.

\textbf{Input}

The following basic input is required in LITTREN:
- Bathymetry profile perpendicular to the trench alignment
- Arbitrary time series of wave/current magnitudes and directions and water levels
- Grain diameter and fall velocity.

\textbf{Output}

The outcome of the simulation is the bathymetry of the trench profile, total change in bed level and total-load transport rates along the trench profile.

\textbf{List of Symbols}

\begin{align*}
\text{c} & : \text{concentration of sediment} \\
\text{t} & : \text{time} \\
\varepsilon & : \text{eddy viscosity} \\
\text{w} & : \text{sediment fall velocity} \\
\text{z} & : \text{bed level}
\end{align*}
THE PROFILE DEVELOPMENT MODULE, LITPROF

LITPROF describes cross-shore profile changes by solving the bottom sediment continuity equation, based on the sediment transport rates calculated by STP.

LITPROF, being a time-domain model, includes the effects of changing morphology on the wave climate and transport regime. This enables a simulation of profile development for a time-varying incident wave field.

LITPROF accounts for the following effects:
- Shoaling of waves
- Breaking waves
- Transport, including the effects of undertow, Lagrangian drift, streaming and bed slope
- Structures (submerged breakwater and/or revetment).

The boundary condition is that the sediment transport is zero at the coastline.

The morphological model cannot be based directly on the sediment transport rates calculated from the local wave parameters, because it is not physically correct to expect an immediate, local response of the sediment transport to varying hydrodynamic conditions (Roelvink and Stive (1988)). Today no theory exists that can describe the actual cross shore variation of the sediment transport, and a heuristic transformation of the sediment transport calculated from the local conditions has been applied. The transformation reflects that the circulation current does not adjust immediately to the driving forces, but develops gradually. The peak of sediment transport is therefore shifted shorewards relative to the maximum of the driving forces. The transformation, giving the sediment transport, \(q_{sl} \), used for the profile modelling, is expressed as a response function:

\[
\frac{\partial q_{sl}}{\partial x} = \frac{q_{sl} - q_{sl}}{L}
\]

Symbol List
- \(h \) : bed level
- \(n \) : porosity of the bed material.

The length scale \(L \) is proportional to the local water depth.

Basic Equations
A sediment transport table based on STP calculations are used as the basis for the morphological module (Hedegaard et al. (1988), describing the development of the coastal profile. The bed level change is described by the continuity equation for the sediment:

\[
\frac{\partial h}{\partial t} = \frac{1}{1 - n} \frac{\partial q_s}{\partial x}
\]

Solution Technique
The equations are solved using finite difference techniques with variables defined on a space-staggered equidistant horizontal grid.
Input
The following basic input is required in LITPROF:
- Cross-shore profile bathymetry
- Arbitrary time-series of wave height and water level
- Data base of transport rates (previously generated).

Output
The main results from LITPROF are
- Profile response to various conditions
- Fate of nourished material
- Profile response to structures
- Profile envelope.

References